79 lines
2.6 KiB
Python
79 lines
2.6 KiB
Python
|
import torch
|
||
|
import comfy.model_management
|
||
|
import comfy.conds
|
||
|
|
||
|
def prepare_mask(noise_mask, shape, device):
|
||
|
"""ensures noise mask is of proper dimensions"""
|
||
|
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
||
|
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
||
|
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
|
||
|
noise_mask = noise_mask.to(device)
|
||
|
return noise_mask
|
||
|
|
||
|
def get_models_from_cond(cond, model_type):
|
||
|
models = []
|
||
|
for c in cond:
|
||
|
if model_type in c:
|
||
|
models += [c[model_type]]
|
||
|
return models
|
||
|
|
||
|
def convert_cond(cond):
|
||
|
out = []
|
||
|
for c in cond:
|
||
|
temp = c[1].copy()
|
||
|
model_conds = temp.get("model_conds", {})
|
||
|
if c[0] is not None:
|
||
|
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
|
||
|
temp["cross_attn"] = c[0]
|
||
|
temp["model_conds"] = model_conds
|
||
|
out.append(temp)
|
||
|
return out
|
||
|
|
||
|
def get_additional_models(conds, dtype):
|
||
|
"""loads additional models in conditioning"""
|
||
|
cnets = []
|
||
|
gligen = []
|
||
|
|
||
|
for k in conds:
|
||
|
cnets += get_models_from_cond(conds[k], "control")
|
||
|
gligen += get_models_from_cond(conds[k], "gligen")
|
||
|
|
||
|
control_nets = set(cnets)
|
||
|
|
||
|
inference_memory = 0
|
||
|
control_models = []
|
||
|
for m in control_nets:
|
||
|
control_models += m.get_models()
|
||
|
inference_memory += m.inference_memory_requirements(dtype)
|
||
|
|
||
|
gligen = [x[1] for x in gligen]
|
||
|
models = control_models + gligen
|
||
|
return models, inference_memory
|
||
|
|
||
|
def cleanup_additional_models(models):
|
||
|
"""cleanup additional models that were loaded"""
|
||
|
for m in models:
|
||
|
if hasattr(m, 'cleanup'):
|
||
|
m.cleanup()
|
||
|
|
||
|
|
||
|
def prepare_sampling(model, noise_shape, conds):
|
||
|
device = model.load_device
|
||
|
real_model = None
|
||
|
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||
|
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
||
|
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
||
|
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
||
|
real_model = model.model
|
||
|
|
||
|
return real_model, conds, models
|
||
|
|
||
|
def cleanup_models(conds, models):
|
||
|
cleanup_additional_models(models)
|
||
|
|
||
|
control_cleanup = []
|
||
|
for k in conds:
|
||
|
control_cleanup += get_models_from_cond(conds[k], "control")
|
||
|
|
||
|
cleanup_additional_models(set(control_cleanup))
|