test/comfy/ldm/flux/model.py

161 lines
6.0 KiB
Python
Raw Permalink Normal View History

2024-08-03 09:27:31 +00:00
#Original code can be found on: https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from .layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
from einops import rearrange, repeat
2024-08-28 16:33:34 +00:00
import comfy.ldm.common_dit
2024-08-03 09:27:31 +00:00
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
2024-08-28 16:33:34 +00:00
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
2024-08-03 09:27:31 +00:00
super().__init__()
self.dtype = dtype
params = FluxParams(**kwargs)
self.params = params
2024-08-28 16:33:34 +00:00
self.in_channels = params.in_channels * 2 * 2
2024-08-03 09:27:31 +00:00
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
2024-08-28 16:33:34 +00:00
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
2024-08-03 09:27:31 +00:00
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor = None,
2024-08-28 16:33:34 +00:00
control=None,
2024-08-03 09:27:31 +00:00
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
2024-08-28 16:33:34 +00:00
for i, block in enumerate(self.double_blocks):
2024-08-03 09:27:31 +00:00
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
2024-08-28 16:33:34 +00:00
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
2024-08-03 09:27:31 +00:00
img = torch.cat((txt, img), 1)
2024-08-28 16:33:34 +00:00
for i, block in enumerate(self.single_blocks):
2024-08-03 09:27:31 +00:00
img = block(img, vec=vec, pe=pe)
2024-08-28 16:33:34 +00:00
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
2024-08-03 09:27:31 +00:00
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
2024-08-28 16:33:34 +00:00
def forward(self, x, timestep, context, y, guidance, control=None, **kwargs):
2024-08-03 09:27:31 +00:00
bs, c, h, w = x.shape
patch_size = 2
2024-08-28 16:33:34 +00:00
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
2024-08-03 09:27:31 +00:00
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
2024-08-28 16:33:34 +00:00
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control)
2024-08-03 09:27:31 +00:00
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]