94 lines
4.2 KiB
Python
94 lines
4.2 KiB
Python
|
"""
|
||
|
This file is part of ComfyUI.
|
||
|
Copyright (C) 2024 Stability AI
|
||
|
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
import torchvision
|
||
|
from torch import nn
|
||
|
from .common import LayerNorm2d_op
|
||
|
|
||
|
|
||
|
class CNetResBlock(nn.Module):
|
||
|
def __init__(self, c, dtype=None, device=None, operations=None):
|
||
|
super().__init__()
|
||
|
self.blocks = nn.Sequential(
|
||
|
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
||
|
nn.GELU(),
|
||
|
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
||
|
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
||
|
nn.GELU(),
|
||
|
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x + self.blocks(x)
|
||
|
|
||
|
|
||
|
class ControlNet(nn.Module):
|
||
|
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
|
||
|
super().__init__()
|
||
|
if bottleneck_mode is None:
|
||
|
bottleneck_mode = 'effnet'
|
||
|
self.proj_blocks = proj_blocks
|
||
|
if bottleneck_mode == 'effnet':
|
||
|
embd_channels = 1280
|
||
|
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
||
|
if c_in != 3:
|
||
|
in_weights = self.backbone[0][0].weight.data
|
||
|
self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
|
||
|
if c_in > 3:
|
||
|
# nn.init.constant_(self.backbone[0][0].weight, 0)
|
||
|
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
|
||
|
else:
|
||
|
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
|
||
|
elif bottleneck_mode == 'simple':
|
||
|
embd_channels = c_in
|
||
|
self.backbone = nn.Sequential(
|
||
|
operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
|
||
|
nn.LeakyReLU(0.2, inplace=True),
|
||
|
operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
|
||
|
)
|
||
|
elif bottleneck_mode == 'large':
|
||
|
self.backbone = nn.Sequential(
|
||
|
operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
|
||
|
nn.LeakyReLU(0.2, inplace=True),
|
||
|
operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
|
||
|
*[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
|
||
|
operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
|
||
|
)
|
||
|
embd_channels = 1280
|
||
|
else:
|
||
|
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
|
||
|
self.projections = nn.ModuleList()
|
||
|
for _ in range(len(proj_blocks)):
|
||
|
self.projections.append(nn.Sequential(
|
||
|
operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
|
||
|
nn.LeakyReLU(0.2, inplace=True),
|
||
|
operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
|
||
|
))
|
||
|
# nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
|
||
|
self.xl = False
|
||
|
self.input_channels = c_in
|
||
|
self.unshuffle_amount = 8
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.backbone(x)
|
||
|
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
|
||
|
for i, idx in enumerate(self.proj_blocks):
|
||
|
proj_outputs[idx] = self.projections[i](x)
|
||
|
return {"input": proj_outputs[::-1]}
|