85 lines
3.0 KiB
Python
85 lines
3.0 KiB
Python
|
import os
|
||
|
import logging
|
||
|
from spandrel import ModelLoader, ImageModelDescriptor
|
||
|
from comfy import model_management
|
||
|
import torch
|
||
|
import comfy.utils
|
||
|
import folder_paths
|
||
|
|
||
|
try:
|
||
|
from spandrel_extra_arches import EXTRA_REGISTRY
|
||
|
from spandrel import MAIN_REGISTRY
|
||
|
MAIN_REGISTRY.add(*EXTRA_REGISTRY)
|
||
|
logging.info("Successfully imported spandrel_extra_arches: support for non commercial upscale models.")
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
class UpscaleModelLoader:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ),
|
||
|
}}
|
||
|
RETURN_TYPES = ("UPSCALE_MODEL",)
|
||
|
FUNCTION = "load_model"
|
||
|
|
||
|
CATEGORY = "loaders"
|
||
|
|
||
|
def load_model(self, model_name):
|
||
|
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name)
|
||
|
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
|
||
|
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
|
||
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""})
|
||
|
out = ModelLoader().load_from_state_dict(sd).eval()
|
||
|
|
||
|
if not isinstance(out, ImageModelDescriptor):
|
||
|
raise Exception("Upscale model must be a single-image model.")
|
||
|
|
||
|
return (out, )
|
||
|
|
||
|
|
||
|
class ImageUpscaleWithModel:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "upscale_model": ("UPSCALE_MODEL",),
|
||
|
"image": ("IMAGE",),
|
||
|
}}
|
||
|
RETURN_TYPES = ("IMAGE",)
|
||
|
FUNCTION = "upscale"
|
||
|
|
||
|
CATEGORY = "image/upscaling"
|
||
|
|
||
|
def upscale(self, upscale_model, image):
|
||
|
device = model_management.get_torch_device()
|
||
|
|
||
|
memory_required = model_management.module_size(upscale_model.model)
|
||
|
memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 #The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
|
||
|
memory_required += image.nelement() * image.element_size()
|
||
|
model_management.free_memory(memory_required, device)
|
||
|
|
||
|
upscale_model.to(device)
|
||
|
in_img = image.movedim(-1,-3).to(device)
|
||
|
|
||
|
tile = 512
|
||
|
overlap = 32
|
||
|
|
||
|
oom = True
|
||
|
while oom:
|
||
|
try:
|
||
|
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
|
||
|
pbar = comfy.utils.ProgressBar(steps)
|
||
|
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
|
||
|
oom = False
|
||
|
except model_management.OOM_EXCEPTION as e:
|
||
|
tile //= 2
|
||
|
if tile < 128:
|
||
|
raise e
|
||
|
|
||
|
upscale_model.to("cpu")
|
||
|
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
|
||
|
return (s,)
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"UpscaleModelLoader": UpscaleModelLoader,
|
||
|
"ImageUpscaleWithModel": ImageUpscaleWithModel
|
||
|
}
|