229 lines
7.1 KiB
Python
229 lines
7.1 KiB
Python
|
import torchaudio
|
||
|
import torch
|
||
|
import comfy.model_management
|
||
|
import folder_paths
|
||
|
import os
|
||
|
import io
|
||
|
import json
|
||
|
import struct
|
||
|
import random
|
||
|
import hashlib
|
||
|
from comfy.cli_args import args
|
||
|
|
||
|
class EmptyLatentAudio:
|
||
|
def __init__(self):
|
||
|
self.device = comfy.model_management.intermediate_device()
|
||
|
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
|
||
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
|
||
|
}}
|
||
|
RETURN_TYPES = ("LATENT",)
|
||
|
FUNCTION = "generate"
|
||
|
|
||
|
CATEGORY = "latent/audio"
|
||
|
|
||
|
def generate(self, seconds, batch_size):
|
||
|
length = round((seconds * 44100 / 2048) / 2) * 2
|
||
|
latent = torch.zeros([batch_size, 64, length], device=self.device)
|
||
|
return ({"samples":latent, "type": "audio"}, )
|
||
|
|
||
|
class VAEEncodeAudio:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
|
||
|
RETURN_TYPES = ("LATENT",)
|
||
|
FUNCTION = "encode"
|
||
|
|
||
|
CATEGORY = "latent/audio"
|
||
|
|
||
|
def encode(self, vae, audio):
|
||
|
sample_rate = audio["sample_rate"]
|
||
|
if 44100 != sample_rate:
|
||
|
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
|
||
|
else:
|
||
|
waveform = audio["waveform"]
|
||
|
|
||
|
t = vae.encode(waveform.movedim(1, -1))
|
||
|
return ({"samples":t}, )
|
||
|
|
||
|
class VAEDecodeAudio:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
||
|
RETURN_TYPES = ("AUDIO",)
|
||
|
FUNCTION = "decode"
|
||
|
|
||
|
CATEGORY = "latent/audio"
|
||
|
|
||
|
def decode(self, vae, samples):
|
||
|
audio = vae.decode(samples["samples"]).movedim(-1, 1)
|
||
|
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
|
||
|
std[std < 1.0] = 1.0
|
||
|
audio /= std
|
||
|
return ({"waveform": audio, "sample_rate": 44100}, )
|
||
|
|
||
|
|
||
|
def create_vorbis_comment_block(comment_dict, last_block):
|
||
|
vendor_string = b'ComfyUI'
|
||
|
vendor_length = len(vendor_string)
|
||
|
|
||
|
comments = []
|
||
|
for key, value in comment_dict.items():
|
||
|
comment = f"{key}={value}".encode('utf-8')
|
||
|
comments.append(struct.pack('<I', len(comment)) + comment)
|
||
|
|
||
|
user_comment_list_length = len(comments)
|
||
|
user_comments = b''.join(comments)
|
||
|
|
||
|
comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments
|
||
|
if last_block:
|
||
|
id = b'\x84'
|
||
|
else:
|
||
|
id = b'\x04'
|
||
|
comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data
|
||
|
|
||
|
return comment_block
|
||
|
|
||
|
def insert_or_replace_vorbis_comment(flac_io, comment_dict):
|
||
|
if len(comment_dict) == 0:
|
||
|
return flac_io
|
||
|
|
||
|
flac_io.seek(4)
|
||
|
|
||
|
blocks = []
|
||
|
last_block = False
|
||
|
|
||
|
while not last_block:
|
||
|
header = flac_io.read(4)
|
||
|
last_block = (header[0] & 0x80) != 0
|
||
|
block_type = header[0] & 0x7F
|
||
|
block_length = struct.unpack('>I', b'\x00' + header[1:])[0]
|
||
|
block_data = flac_io.read(block_length)
|
||
|
|
||
|
if block_type == 4 or block_type == 1:
|
||
|
pass
|
||
|
else:
|
||
|
header = bytes([(header[0] & (~0x80))]) + header[1:]
|
||
|
blocks.append(header + block_data)
|
||
|
|
||
|
blocks.append(create_vorbis_comment_block(comment_dict, last_block=True))
|
||
|
|
||
|
new_flac_io = io.BytesIO()
|
||
|
new_flac_io.write(b'fLaC')
|
||
|
for block in blocks:
|
||
|
new_flac_io.write(block)
|
||
|
|
||
|
new_flac_io.write(flac_io.read())
|
||
|
return new_flac_io
|
||
|
|
||
|
|
||
|
class SaveAudio:
|
||
|
def __init__(self):
|
||
|
self.output_dir = folder_paths.get_output_directory()
|
||
|
self.type = "output"
|
||
|
self.prefix_append = ""
|
||
|
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "audio": ("AUDIO", ),
|
||
|
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"})},
|
||
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||
|
}
|
||
|
|
||
|
RETURN_TYPES = ()
|
||
|
FUNCTION = "save_audio"
|
||
|
|
||
|
OUTPUT_NODE = True
|
||
|
|
||
|
CATEGORY = "audio"
|
||
|
|
||
|
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||
|
filename_prefix += self.prefix_append
|
||
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||
|
results = list()
|
||
|
|
||
|
metadata = {}
|
||
|
if not args.disable_metadata:
|
||
|
if prompt is not None:
|
||
|
metadata["prompt"] = json.dumps(prompt)
|
||
|
if extra_pnginfo is not None:
|
||
|
for x in extra_pnginfo:
|
||
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
||
|
|
||
|
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
|
||
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
||
|
file = f"{filename_with_batch_num}_{counter:05}_.flac"
|
||
|
|
||
|
buff = io.BytesIO()
|
||
|
torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC")
|
||
|
|
||
|
buff = insert_or_replace_vorbis_comment(buff, metadata)
|
||
|
|
||
|
with open(os.path.join(full_output_folder, file), 'wb') as f:
|
||
|
f.write(buff.getbuffer())
|
||
|
|
||
|
results.append({
|
||
|
"filename": file,
|
||
|
"subfolder": subfolder,
|
||
|
"type": self.type
|
||
|
})
|
||
|
counter += 1
|
||
|
|
||
|
return { "ui": { "audio": results } }
|
||
|
|
||
|
class PreviewAudio(SaveAudio):
|
||
|
def __init__(self):
|
||
|
self.output_dir = folder_paths.get_temp_directory()
|
||
|
self.type = "temp"
|
||
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||
|
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required":
|
||
|
{"audio": ("AUDIO", ), },
|
||
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||
|
}
|
||
|
|
||
|
class LoadAudio:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
input_dir = folder_paths.get_input_directory()
|
||
|
files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
|
||
|
return {"required": {"audio": (sorted(files), {"audio_upload": True})}}
|
||
|
|
||
|
CATEGORY = "audio"
|
||
|
|
||
|
RETURN_TYPES = ("AUDIO", )
|
||
|
FUNCTION = "load"
|
||
|
|
||
|
def load(self, audio):
|
||
|
audio_path = folder_paths.get_annotated_filepath(audio)
|
||
|
waveform, sample_rate = torchaudio.load(audio_path)
|
||
|
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
|
||
|
return (audio, )
|
||
|
|
||
|
@classmethod
|
||
|
def IS_CHANGED(s, audio):
|
||
|
image_path = folder_paths.get_annotated_filepath(audio)
|
||
|
m = hashlib.sha256()
|
||
|
with open(image_path, 'rb') as f:
|
||
|
m.update(f.read())
|
||
|
return m.digest().hex()
|
||
|
|
||
|
@classmethod
|
||
|
def VALIDATE_INPUTS(s, audio):
|
||
|
if not folder_paths.exists_annotated_filepath(audio):
|
||
|
return "Invalid audio file: {}".format(audio)
|
||
|
return True
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"EmptyLatentAudio": EmptyLatentAudio,
|
||
|
"VAEEncodeAudio": VAEEncodeAudio,
|
||
|
"VAEDecodeAudio": VAEDecodeAudio,
|
||
|
"SaveAudio": SaveAudio,
|
||
|
"LoadAudio": LoadAudio,
|
||
|
"PreviewAudio": PreviewAudio,
|
||
|
}
|