120 lines
4.5 KiB
Python
120 lines
4.5 KiB
Python
|
import torch
|
||
|
import comfy.model_management
|
||
|
import comfy.utils
|
||
|
import folder_paths
|
||
|
import os
|
||
|
import logging
|
||
|
from enum import Enum
|
||
|
|
||
|
CLAMP_QUANTILE = 0.99
|
||
|
|
||
|
def extract_lora(diff, rank):
|
||
|
conv2d = (len(diff.shape) == 4)
|
||
|
kernel_size = None if not conv2d else diff.size()[2:4]
|
||
|
conv2d_3x3 = conv2d and kernel_size != (1, 1)
|
||
|
out_dim, in_dim = diff.size()[0:2]
|
||
|
rank = min(rank, in_dim, out_dim)
|
||
|
|
||
|
if conv2d:
|
||
|
if conv2d_3x3:
|
||
|
diff = diff.flatten(start_dim=1)
|
||
|
else:
|
||
|
diff = diff.squeeze()
|
||
|
|
||
|
|
||
|
U, S, Vh = torch.linalg.svd(diff.float())
|
||
|
U = U[:, :rank]
|
||
|
S = S[:rank]
|
||
|
U = U @ torch.diag(S)
|
||
|
Vh = Vh[:rank, :]
|
||
|
|
||
|
dist = torch.cat([U.flatten(), Vh.flatten()])
|
||
|
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
||
|
low_val = -hi_val
|
||
|
|
||
|
U = U.clamp(low_val, hi_val)
|
||
|
Vh = Vh.clamp(low_val, hi_val)
|
||
|
if conv2d:
|
||
|
U = U.reshape(out_dim, rank, 1, 1)
|
||
|
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
||
|
return (U, Vh)
|
||
|
|
||
|
class LORAType(Enum):
|
||
|
STANDARD = 0
|
||
|
FULL_DIFF = 1
|
||
|
|
||
|
LORA_TYPES = {"standard": LORAType.STANDARD,
|
||
|
"full_diff": LORAType.FULL_DIFF}
|
||
|
|
||
|
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False):
|
||
|
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
|
||
|
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
|
||
|
|
||
|
for k in sd:
|
||
|
if k.endswith(".weight"):
|
||
|
weight_diff = sd[k]
|
||
|
if lora_type == LORAType.STANDARD:
|
||
|
if weight_diff.ndim < 2:
|
||
|
if bias_diff:
|
||
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
||
|
continue
|
||
|
try:
|
||
|
out = extract_lora(weight_diff, rank)
|
||
|
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu()
|
||
|
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu()
|
||
|
except:
|
||
|
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k))
|
||
|
elif lora_type == LORAType.FULL_DIFF:
|
||
|
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
||
|
|
||
|
elif bias_diff and k.endswith(".bias"):
|
||
|
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu()
|
||
|
return output_sd
|
||
|
|
||
|
class LoraSave:
|
||
|
def __init__(self):
|
||
|
self.output_dir = folder_paths.get_output_directory()
|
||
|
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
|
||
|
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}),
|
||
|
"lora_type": (tuple(LORA_TYPES.keys()),),
|
||
|
"bias_diff": ("BOOLEAN", {"default": True}),
|
||
|
},
|
||
|
"optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}),
|
||
|
"text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})},
|
||
|
}
|
||
|
RETURN_TYPES = ()
|
||
|
FUNCTION = "save"
|
||
|
OUTPUT_NODE = True
|
||
|
|
||
|
CATEGORY = "_for_testing"
|
||
|
|
||
|
def save(self, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None):
|
||
|
if model_diff is None and text_encoder_diff is None:
|
||
|
return {}
|
||
|
|
||
|
lora_type = LORA_TYPES.get(lora_type)
|
||
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||
|
|
||
|
output_sd = {}
|
||
|
if model_diff is not None:
|
||
|
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff)
|
||
|
if text_encoder_diff is not None:
|
||
|
output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff)
|
||
|
|
||
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
||
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||
|
|
||
|
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
|
||
|
return {}
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"LoraSave": LoraSave
|
||
|
}
|
||
|
|
||
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
||
|
"LoraSave": "Extract and Save Lora"
|
||
|
}
|