96 lines
4.9 KiB
Python
96 lines
4.9 KiB
Python
|
from comfy import sd1_clip
|
||
|
import torch
|
||
|
import os
|
||
|
|
||
|
class SDXLClipG(sd1_clip.SDClipModel):
|
||
|
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None, model_options={}):
|
||
|
if layer == "penultimate":
|
||
|
layer="hidden"
|
||
|
layer_idx=-2
|
||
|
|
||
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||
|
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||
|
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
|
||
|
|
||
|
def load_sd(self, sd):
|
||
|
return super().load_sd(sd)
|
||
|
|
||
|
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
|
||
|
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||
|
|
||
|
|
||
|
class SDXLTokenizer:
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||
|
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||
|
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
|
||
|
|
||
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||
|
out = {}
|
||
|
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
|
||
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||
|
return out
|
||
|
|
||
|
def untokenize(self, token_weight_pair):
|
||
|
return self.clip_g.untokenize(token_weight_pair)
|
||
|
|
||
|
def state_dict(self):
|
||
|
return {}
|
||
|
|
||
|
class SDXLClipModel(torch.nn.Module):
|
||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||
|
super().__init__()
|
||
|
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||
|
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
|
||
|
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
|
||
|
self.dtypes = set([dtype])
|
||
|
|
||
|
def set_clip_options(self, options):
|
||
|
self.clip_l.set_clip_options(options)
|
||
|
self.clip_g.set_clip_options(options)
|
||
|
|
||
|
def reset_clip_options(self):
|
||
|
self.clip_g.reset_clip_options()
|
||
|
self.clip_l.reset_clip_options()
|
||
|
|
||
|
def encode_token_weights(self, token_weight_pairs):
|
||
|
token_weight_pairs_g = token_weight_pairs["g"]
|
||
|
token_weight_pairs_l = token_weight_pairs["l"]
|
||
|
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
|
||
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||
|
cut_to = min(l_out.shape[1], g_out.shape[1])
|
||
|
return torch.cat([l_out[:,:cut_to], g_out[:,:cut_to]], dim=-1), g_pooled
|
||
|
|
||
|
def load_sd(self, sd):
|
||
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||
|
return self.clip_g.load_sd(sd)
|
||
|
else:
|
||
|
return self.clip_l.load_sd(sd)
|
||
|
|
||
|
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
|
||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||
|
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG, model_options=model_options)
|
||
|
|
||
|
|
||
|
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
|
||
|
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
|
||
|
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
|
||
|
|
||
|
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="g", tokenizer=StableCascadeClipGTokenizer)
|
||
|
|
||
|
class StableCascadeClipG(sd1_clip.SDClipModel):
|
||
|
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
|
||
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||
|
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
|
||
|
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)
|
||
|
|
||
|
def load_sd(self, sd):
|
||
|
return super().load_sd(sd)
|
||
|
|
||
|
class StableCascadeClipModel(sd1_clip.SD1ClipModel):
|
||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||
|
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG, model_options=model_options)
|